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(10 points) Let # be the angle between an edge of the cube and the long diagonal from an
endpoint of the same edge to the opposite corner of the cube (this long diagonal contains
the center of the cube). Make a sketch of the cube. the edge. and the diagonal and then use

it to find cosé.
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2. Consider the plane = + 2y — 2z = 3 and the point P = (0, —1, 2).
a) (3 points) Find the parametric equation of the line through point P that is orthogonal

to the plane.

A divection vectr U & +the lime 15 a norwal yector
oF the plane Y€29-22=3

3 VvV =0,—2,2)

The linve 19 +hen \mmw\e\-&&eé by

Tty = [Cot 1 t, 1 %at, 2-28)|

b) (3 points) Find the point of intersection of that line and the plane. This is the point

on the plane closest to P.
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¢) (4 points) Find the point () such that @) is the mirror image (or reflection) of P with
respect to the plane.
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3. Consider the plane r + y + z = 3 and the line Ly given by (z,y,z) = (1 +3t,1 —2t,1 —t).
The line Ly lies on the plane. Find the parametric equation of another line Lo that contains
the point (1,1.1) like Ly and also lies on the plane but is orthogonal to L.
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4. In this problem. we consider a particle moving on a helix.

a) (2 points) Suppose the position vector of a particle as a function of time ¢ is given by
r(t) = (cost,sint, 3t). Find the speed of the particle. (Speed is the magnitude of the
velocity.)

\le\od’r’:\ : —T”L‘ﬂ = (-Sut, cos €, 3)

Speed - V| = \Ys‘w\’t +cgt+t3 = Jio

b) (3 points) The position vector of another particle moving on the same helix at a different
speed is given by r(t) = (cos2t,sin 2t,6¢). Find the magnitude of its acceleration.

\Ie\oahﬁ S V) = (-2sm(t), 2cees(2€), 6)

Acceleration - T‘md:\ = (= 4w5(4t), —4Sn4t), o)

S [V = \ﬂe (o(at) ¥ (6 (4E) +O :E'l

¢) (5 points) A particle moves on the same helix with constant speed equal to v. Find the

magnitude of its acceleration.
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5. Suppose z = f(x,y) and r = u® — v*, y = u* + v°.

a) (b points) Find %
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6. In each of the parts below. evaluate the partial derivative using implicit differentiation

a) (3 points) z% + y? + 22 = 1. Find %
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7. Consider the paraboloid z = 22 + y? and the point P = (2, —1,5).

a) (4 points) Find the tangent plane to the paraboloid at the point P.
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b) (2 points) Find the parametric equation of the normal line at P.
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¢) (4 points) The plane that contains the normal line and the origin (0,0, 0) intersects the
paraboloid along a curve. Find the parametric equation of this curve.
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8. Suppose a = (1,1,1) and b = (1,1, —1) are two vectors.
a) (3 points) Find the projection of b along a.
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b) (7 points) Suppose b is rotated with a as the axis of rotation by 45° or § (with the
E.,,mme\% sense of rotation determined by the right hand rule). Find the resulting vector.
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